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UltraSlice Nickase scarless gene editing may increase the efficiency of in vivo gene

Ref- gccaccagcattctctectteccactecctgecagGGCCCCATCGGCTTTCCTGGAGAACGCGGGCTGAAGGGCGACCGTGGAGAC
F- GCCACCAGCATTCTCTCTTCCACTCCTGCGGGGCCCCATCGGTTTTCGGGGARAAGCGGGGGGAGAGGGGACACCGGGGACCC
R- CCCCCCCCCACTTTTTTTTTTCCTCCTGCAGGGCCCCATCGGCTTTCCTGGAGAACGCGGGCTGAAGGGCGACCGTGGAGAC

insertion by allowing for repeat dosing. | | | | |
Figure 7. Insertion of 300 nt ssDNA donor sequence into human iMSCs following

electroporation. 2% agarose gel showing PCR-amplified gDNA with arrow pointing to
insertion bands and asterisk pointing to wildtype bands below. Graph illustrating
quantified relative insertion levels which are similar between US22 and USN?2.

Figure 6. Insertion of 300 bp dsDNA donor sequence into human iPSCs following electroporation. 2%
agarose gel showing PCR-amplified gDNA with arrow pointing to insertion bands and asterisk

— pointing to wildtype bands below. Graph illustrating quantified relative insertion levels where USN2
USN2: % ut site

Ref- gccaccagcattctctcttccactecctgecagGGCCCCATCGGCTTTCCTGGAGAACGCGGGCTGAAGGGCGACCGTGGAGAC
F- GCCACCAGCATTCTCTCTTCCACTCCTGCAGGGCCCCATCGGCTTTCCTGGAGAACGCGGGCTGAAGGGCGACCGTGGAGAC
R- GCCACCAGCATTCTCTCTTCCACTCCTGCAGGGCCCCATCGGCTTTCCTGGAGAACGCGGGCTGAAGGGCGACCGTGGAGAC

has greater insertion than US22. Overall reduced insertion is due to use of dsDNA when ssDNA
would have been optimal.

Figure 5. Insertion of 300 bp dsDNA donor sequence into primary human fibroblasts following electroporation. 2% agarose gel = /\ C —I— O IQ ® /g\’“ | _
showing PCR-amplified gDNA with arrow pointing to insertion bands and asterisk pointing to wildtype bands below. Graph Ao o (J}bc rm&lﬁzccsgﬁ'ﬁmpy
illustrating quantified relative insertion levels. Sanger sequencing of wildtype bands (535 bp) from US22 and USN2 fibroblast

electroporation. Red letters indicate NHEJ/MME]J.




